\qquad

Chemical Calculations Assignment

Moles and Mass
1.
(a) Use an analogy to explain the mole concept. "A mole is like..."
/2
(b) State why a mole is a more useful quantity in chemistry than mass.
2. Calculate the molar mass of the following substances, showing full working:
$\begin{array}{lc}\text { (a) } \mathrm{Na}_{2} \mathrm{CO}_{3} & \\ \text { (b) } \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} & \\ \text { (c) } \mathrm{FeSi}_{2} & 12\end{array}$
(c) $\mathrm{FeSi}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
3. For each species in the equation below, write its formula and molar mass:

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

4. Calculate the number of moles in the following masses:
(a) 2.50 g of sodium carbonate $\left(105.99 \mathrm{~g} \mathrm{~mol}^{-1}\right) \quad / 2$
(b) 0.62 g of $\mathrm{NH}_{4} \mathrm{Cl} \quad / 3$
(c) 1.0 kg of copper sulfate pentahydrate $\left(249.66 \mathrm{~g} \mathrm{~mol}^{-1}\right) \quad / 3$
5. Calculate the mass of the following:
(a) 1.0 moles of nitric acid $\left(63.01 \mathrm{~g} \mathrm{~mol}^{-1}\right) \quad / 2$
(b) 0.0200 moles of mercury metal /3
6. Consider the balanced chemical equation below:

$$
8 \mathrm{H}^{+}+5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-} \rightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
$$

(a) Write the mole ratio $\frac{n\left(\mathrm{MnO}_{4}^{-}\right)}{n\left(\mathrm{Fe}^{2+}\right)}$.
(b) Write the mole ratio for one other pair of species.
7. Consider a reaction in which 3.00 moles CH_{4} is burnt with excess oxygen according to this equation:

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

(a) State what it means for oxygen to be in 'excess'. /1
(b) State the limiting reactant. 11
(c) Suggest one reason why the oxygen is in excess when this reaction is carried out. /1
(d) Explain why 3.00 moles of CO_{2} will be produced in this reaction. /2
(e) State the mole ratio $\frac{n\left(\mathrm{H}_{2} \mathrm{O}\right)}{n\left(\mathrm{CH}_{4}\right)}$.
(f) Hence determine the number of moles of water produced in this reaction.
(g) Hence calculate the mass of water produced.
8. If 7.4 mol of hydrogen gas and 3.6 mol of oxygen gas are ignited, the following reaction occurs:

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

(a) Determine which reactant is in excess.
(b) Determine the number of moles of water produced.

Year 11 Chemistry

Chemical Calculations Assignment

Moles and Mass

Learning Intentions

To be able to:

- Define mole and molar mass
- Determine molar masses from the periodic table
- Convert between mass and moles
- Write mole ratios from balanced chemical equations
- Define excess and limiting reactants
- Determine number of moles that would exactly react (given moles of other reactant)
- Determine number of moles that would be produced (given one reactant in excess)
- Determine excess and limiting reactants (given moles of each reactant)

